Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1408630

ABSTRACT

Macrophages are widely distributed in tissues and function in homeostasis. During cancer development, tumor-associated macrophages (TAMs) dominatingly support disease progression and resistance to therapy by promoting tumor proliferation, angiogenesis, metastasis, and immunosuppression, thereby making TAMs a target for tumor immunotherapy. Here, we started with evidence that TAMs are highly plastic and heterogeneous in phenotype and function in response to microenvironmental cues. We pointed out that efforts to tear off the heterogeneous "camouflage" in TAMs conduce to target de facto protumoral TAMs efficiently. In particular, several fate-mapping models suggest that most tissue-resident macrophages (TRMs) are generated from embryonic progenitors, and new paradigms uncover the ontogeny of TAMs. First, TAMs from embryonic modeling of TRMs and circulating monocytes have distinct transcriptional profiling and function, suggesting that the ontogeny of TAMs is responsible for the functional heterogeneity of TAMs, in addition to microenvironmental cues. Second, metabolic remodeling helps determine the mechanism of phenotypic and functional characteristics in TAMs, including metabolic bias from macrophages' ontogeny in macrophages' functional plasticity under physiological and pathological conditions. Both models aim at dissecting the ontogeny-related metabolic regulation in the phenotypic and functional heterogeneity in TAMs. We argue that gleaning from the single-cell transcriptomics on subclonal TAMs' origins may help understand the classification of TAMs' population in subclonal evolution and their distinct roles in tumor development. We envision that TAM-subclone-specific metabolic reprogramming may round-up with future cancer therapies.


Subject(s)
Embryo, Mammalian/pathology , Neoplasms/pathology , Neoplasms/prevention & control , Tumor-Associated Macrophages/pathology , Glucose/metabolism , Humans , Lipid Metabolism , Neoplasms/metabolism , Single-Cell Analysis
2.
J Assist Reprod Genet ; 38(7): 1709-1720, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1206912

ABSTRACT

PURPOSE: To predict if developing human embryos are permissive to multiple coronaviruses. METHOD: We analyzed publicly available single-cell RNA-seq datasets of human embryos for the known canonical and non-canonical receptors and spike protein cleavage enzymes for multiple coronaviruses like SARS-CoV, SARS-CoV-2, MERS-CoV, hCoV-229E, and hCoV-NL63. We also analyzed the expression of host genes involved in viral replication, host proteins involved in viral endosomal sorting complexes required for transport (ESCRT), genes of host proteins that physically interact with proteins of SARS-CoV-2, and the host genes essential for coronavirus infectivity. RESULTS: Of the known receptors of SARS viruses, ACE2, BSG, GOLGA7, and ZDHHC5 were expressed in different proportions in the zygote, 4-cell, 8-cell, morula, and blastocysts including the trophectoderm. The MERS-CoV receptor, DPP4, and hCoV-229E receptor, ANPEP, were expressed mainly from the compact morula to the blastocyst stages. Transcripts of the MERS-CoV alternate receptor LGALS1 were detected in most cells at all stages of development. TMPRSS2 transcripts were detected in the epiblast, primitive endoderm, and trophectoderm, while transcripts of the endosomal proteases CTSL, CTSB, and FURIN were expressed in most cells at all stages of development. ACE2 and TMPRSS2 were co-expressed in a proportion of epiblast and trophectoderm cells. The embryonic cells expressed genes involved in ESCRT, viral replication, SARS-CoV-2 interactions, and coronavirus infectivity. The ACE2 and TMPRSS2 co-expressing cells were enriched in genes associated with lipid metabolism, lysosome, peroxisome, and oxidative phosphorylation pathways. CONCLUSION: Preimplantation and implantation stage human embryos could be permissive to multiple hCoVs.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Blastocyst/metabolism , Coronavirus Infections/metabolism , Embryo, Mammalian/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication , Angiotensin-Converting Enzyme 2/genetics , Blastocyst/pathology , Blastocyst/virology , Coronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Embryo Implantation , Embryo, Mammalian/pathology , Embryo, Mammalian/virology , Endosomal Sorting Complexes Required for Transport , Humans , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL